
Neural Field Convolutions by Repeated Di�erentiation

NTUMBA ELIE NSAMPI,MPI Informatik, Germany

ADARSH DJEACOUMAR,MPI Informatik, Germany

HANS-PETER SEIDEL,MPI Informatik, Germany

TOBIAS RITSCHEL, University College London, United Kingdom

THOMAS LEIMKÜHLER,MPI Informatik, Germany

×

g g -2

g -1 f 2 g 
* 

ff

Fig. 1. We introduce an algorithm to perform e�icient continuous convolution of neural fields 5 by piecewise polynomial kernels 6. The key idea is to convolve

the sparse repeated derivative of the kernel (6−= ) with the repeated antiderivative of the signal (5 = ).

Neural �elds are evolving towards a general-purpose continuous representa-
tion for visual computing. Yet, despite their numerous appealing properties,
they are hardly amenable to signal processing. As a remedy, we present
a method to perform general continuous convolutions with general con-
tinuous signals such as neural �elds. Observing that piecewise polynomial
kernels reduce to a sparse set of Dirac deltas after repeated di�erentiation,
we leverage convolution identities and train a repeated integral �eld to
e�ciently execute large-scale convolutions. We demonstrate our approach
on a variety of data modalities and spatially-varying kernels.

CCS Concepts: • Computing methodologies → Neural networks; Com-

puter graphics.

Additional Key Words and Phrases: Convolution, Geometry Processing,
Image Processing, Neural Fields, Signal Processing, Sparsity

ACM Reference Format:

Ntumba Elie Nsampi, Adarsh Djeacoumar, Hans-Peter Seidel, Tobias Ritschel,
and Thomas Leimkühler. 2023. Neural Field Convolutions by Repeated Dif-
ferentiation. ACM Trans. Graph. 42, 6, Article 1 (December 2023), 11 pages.
https://doi.org/10.1145/3618340

1 INTRODUCTION

Neural �elds have recently emerged as a powerful way of represent-
ing signals and have witnessed widespread adoption in particular
for visual data [Tewari et al. 2022; Xie et al. 2022]. Also referred to
as implicit or coordinate-based neural representations, neural �elds
typically use a multi-layer perceptron (MLP) to encode a mapping

Authors’ addresses: Ntumba Elie Nsampi, MPI Informatik, Germany, nnsampi@mpi-
inf.mpg.de; Adarsh Djeacoumar, MPI Informatik, Germany, adjeacou@mpi-inf.mpg.de;
Hans-Peter Seidel, MPI Informatik, Germany, hpseidel@mpi-sb.mpg.de; Tobias Ritschel,
University College London, United Kingdom, t.ritschel@ucl.ac.uk; Thomas Leimkühler,
MPI Informatik, Germany, thomas.leimkuehler@mpi-inf.mpg.de.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The de�nitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3618340.

from coordinates to values. This representation is universal and
allows to capture a multitude of modalities, such as mapping from
2D location to color for images [Stanley 2007], from 3D location to
the signed distance to a surface for geometry [Park et al. 2019], from
5D light �eld coordinates to emitted radiance of an entire scene
[Mildenhall et al. 2020], and many more.

The appealing properties of neural �elds are three-fold: First, they
represent signals in a continuous way, which is a good �t for the
mostly continuous visual structure of our world. Second, they are
compact, since they encode complex signals into a relatively small
number of MLP weights [Dupont et al. 2021], while adapting well
to local signal complexities. Third, they are easy to optimize by
construction. Taking all of these properties together, it comes at no
surprise that neural �elds are rapidly evolving towards a general-
purpose data representation [Dupont et al. 2022a]. However, to be
a true alternative to established specialized representations such
as pixel arrays, meshes, point clouds, etc., neural �elds are still
lacking in a fundamental aspect: They are hardly amenable to signal
processing [Xu et al. 2022; Yang et al. 2021]. As a remedy, in this work,
we propose a general framework to apply a core signal processing
technique to neural �elds: convolutions.
The versatility and expressivity of neural representations have

evolved signi�cantly over the last couple of years, mostly due to
advances in architectures and training methodologies [Hertz et al.
2021; Müller et al. 2022; Sitzmann et al. 2020; Tancik et al. 2020].
However, at their core, neural �elds only support point samples.
This is su�cient for point operations, such as the remapping of
input coordinates, e.g., for the purpose of deformations [Kopanas
et al. 2022; Park et al. 2021; Tretschk et al. 2021; Yuan et al. 2022],
or the remapping of output values [Vicini et al. 2022]. In contrast,
a convolution requires the continuous integration of values over
coordinates weighted by a continuous kernel.

ACM Trans. Graph., Vol. 42, No. 6, Article 1. Publication date: December 2023.

https://doi.org/10.1145/3618340
https://doi.org/10.1145/3618340


1:2 • Ntumba Elie Nsampi, Adarsh Djeacoumar, Hans-Peter Seidel, Tobias Ritschel, and Thomas Leimkühler

Learn

Integrate

Sparse sum-prod

Sparsify

Parametrize

Stochastic sum-prod

Dense sum-prod

Di�erentiate

Discretize

Cubature SAT Monte CarloMIP-NeRF INSPOurs

f g* f g* f g* f g* f g* f g*

Result

Fig. 2. The landscape of convolution methods as combinations of di�erent

operations applied to a signal and kernel (top), leading to a result (bo�om).

Aggregation in neural �elds can be approximated using either
discretization followed by cubature, or Monte Carlo sampling, re-
sulting in excessive memory requirements and noise, respectively.
Another solution is to consider a narrow parametric family of ker-
nels and train the �eld using supervision on �ltered versions of the
signal [Barron et al. 2021]. Representation and learned convolution
operation can be explicitly disentangled using higher-order deriva-
tives [Xu et al. 2022], but this comes at the cost of only supporting
small spatially invariant kernels. AutoInt [Lindell et al. 2021] per-
forms analytic integration using automatic di�erentiation, but only
considers unweighted integrals. We advance the state of the art
by presenting a method to e�ciently perform general, large-scale,

spatially-varying convolutions natively in neural �elds.
In our approach, we consider neural �elds to be convolved with

piecewise polynomial kernels, which reduce to a sparse set of Dirac
deltas after repeated di�erentiation [Heckbert 1986]. Combining
this insight with convolution identities on di�erentiation and inte-
gration, our approach requires only a small number of point samples
from a neural integral �eld to perform an exact continuous convo-
lution, independent of kernel size. This integral �eld needs to be
trained in a speci�c way, supervised via continuous higher-order
�nite di�erences, corresponding to a minimal kernel of a certain
polynomial degree. Once trained, our neural �elds are ready to be
convolved with any piecewise polynomial kernel of that degree.

We showcase the generality and versatility of our approach using
di�erent modalities, such as images, videos, geometry, character
animations, and audio, all natively processed in a neural �eld repre-
sentation. Further, we demonstrate (spatially-varying) convolutions
with a variety of kernels, such as smoothing and edge detection of
di�erent shapes and sizes. In summary, our contributions are:

• A principled and versatile framework for performing convo-
lutions in neural �elds.

• Two novel enabling ingredients: An e�cient method to train
a repeated integral �eld, and the optimization of continuous
kernels that are sparse after repeated di�erentiation.

• The evaluation of our framework on a range of modalities
and kernels.

2 RELATED WORK

The convolution of a signal, eventually in some higher dimension,
with a kernel is a central operation in modern signal processing
[Zhang 2022]. In this work, we consider a slightly generalized form
of convolution, where a kernel varies spatially across the signal. Re-
fer to Sec. 1 in the supplemental document for a tabulated overview
of the di�erent solutions discussed next.

Discrete. For discrete signals and kernels (Cubature and SAT in
Fig. 2), most convolutions are based on cubature, i.e., a dense sum-
product operation across all dimensions. This, unfortunately, does
not scale to larger kernels or higher dimensions but allows spatially-
varying kernels. A common acceleration is the Fourier transform
[Brigham 1988], which also requires time and space to perform
and store the transformed signal. Most of all, it requires the ker-
nel to be spatially invariant. As a remedy, certain spatially-varying
convolutions can be realized using spatially-varying combinations
or transformations of stationary �lters [Fournier and Fiume 1988;
Freeman et al. 1991; Mitchel et al. 2020]. For a large class of �lters,
pyramidal schemes [Farbman et al. 2011; Williams 1983] can be a
solution, but require additional memory. The key idea is that in-
termediate pyramid values store a partial aggregate of the signal.
Techniques that store integrals without reducing the resolution are
called summed-area tables (SAT) or integral images [Crow 1984;
Viola and Jones 2001]. Notably, SATs and their variants allow e�-
cient spatially-varying convolution by considering di�erentiated
kernels [Heckbert 1986; Leimkühler et al. 2018; Simard et al. 1998].
This e�ciency comes from the fact that the di�erentiated kernel is
sparse (“Sparsify” for SAT in Fig. 2) and the SAT only needs to be
evaluated at very few locations. Our approach will take this idea to
the continuous neural domain.

Continuous. Convolution becomes more challenging, if the sig-
nal, the kernel, or both are continuous. Monte Carlo methods, that
straightforwardly sample signal and kernel randomly and sum the
result (Monte Carlo in Fig. 2) can handle this case. These scale very
well to high dimensions, but at the expense of noise that only van-
ishes with many samples, even when specialized blue noise [Singh
et al. 2019] or low-discrepancy [Niederreiter 1992; Sobol 1967] sam-
plers are used. Similar to our approach, the use of derivatives has
been shown to be bene�cial [Kettunen et al. 2015]. Practical un-
structured convolution [Hermosilla et al. 2018; Shocher et al. 2020;
Vasconcelos et al. 2023; Wang et al. 2018] does away with cubature
and evaluates the product of kernel and signal only at speci�c sparse
positions such as the points in a point cloud. Our approach does not
rely on random sampling but works directly on a continuous signal.

Neural. It has recently been proposed to replace discrete repre-
sentations with continuous neural networks, so-called neural �elds

[Tewari et al. 2022; Xie et al. 2022]. These have applications in
geometry representation [Park et al. 2019], novel-view synthesis
[Mildenhall et al. 2020; Sitzmann et al. 2019], dynamic scene recon-
struction [Park et al. 2021; Tretschk et al. 2021; Yuan et al. 2022],
etc. Replacing a discrete grid with complex continuous functions
requires developing the same operations available to grids [Dupont
et al. 2022a], including convolutions, as we set out to do in this
work. Early work has been conducted to explore the manifold of all

ACM Trans. Graph., Vol. 42, No. 6, Article 1. Publication date: December 2023.



Neural Field Convolutions by Repeated Di�erentiation • 1:3

natural neural �elds [Du et al. 2021] and to build a generative model
of neural �elds [Dupont et al. 2022b; Erkoç et al. 2023]. Specialized
network architectures allow the decomposition of signals into a
discrete set of frequency bands [Fathony et al. 2020; Lindell et al.
2022; Yang et al. 2022]. Further, limited forms of geometry process-
ing have been considered in this representation [Yang et al. 2021].
However, none of them is looking into general, e�cient, large-scale,
and/or spatially-varying convolutions.
A very speci�c form of convolution occurs as anti-aliasing or

depth-of-�eld in image-based rendering. To account for these e�ects,
neural �elds can be learned that are conditioned on the parameters
of the convolution kernel, such as its bandwidth [Barron et al. 2021,
2022; Isaac-Medina et al. 2023; Wang et al. 2022]. The network can
then be evaluated to directly produce the �ltered result, i.e., signal
representation and convolution operation are intertwined. This Mip-
NeRF-style convolution is in principle applicable to other �lters,
as long as they can be parametrized to become conditions to input
into the network (MIP-NeRF in Fig. 2). Unfortunately, this limits
the kernels that can be applied to a parametric family that needs
to be known in advance. Further, it signi�cantly increases training
time, since kernel parameters act as additional input dimensions to
the network. We use inductive knowledge of integration and di�er-
entiation to arrive at a more e�cient formulation that generalizes
across kernels.

The key to e�cient convolutions is a combination of sparsity, dif-
ferentiation, and integration. Fortunately, tools to perform integra-
tion and di�erentiation on neural �elds are available. AutoInt [Lin-
dell et al. 2021] proposes to learn a neural network that, when
automatically di�erentiated, �ts a signal. By evaluating the original
network without di�erentiation, the antiderivative can be evaluated
conveniently. Unfortunately, this approach does not scale well to the
higher-order antiderivatives needed for e�cient convolutions, as
the size of the derivative graphs grows quickly. In contrast, our ap-
proach leverages higher-order �nite di�erences to train a repeated
integral �eld, which scales with the number of integrations required.

Recently, Xu et al. [2022] have proposed a method with the same
aim as ours (INSP in Fig. 2). Given a trained neural �eld, they learn
to combine higher-order derivatives of the �eld to approximate a
convolution. Similar to a Taylor expansion, this requires high-order
derivatives to reason about larger neighborhoods and, unfortunately,
hence only allows for very small, spatially invariant kernels.

Finally, aggregation in neural �elds in the form of range queries
has been studied by Sharp and Jacobson [2022]. Their approach al-
lows to retrieve a conservative estimate of the �eld’s extrema within
a query volume, which unfortunately does not provide enough in-
formation to perform accurate continuous convolutions.

3 BACKGROUND

We consider the convolution of arbitrary continuous signals 5 ∈

R
3in → R

3out with arbitrary continuous kernels 6 ∈ R
3 → R.

Both inputs and outputs of 5 are low- to medium-dimensional. The
signal can be any continuous function, including but not limited to a
neural network. We assume the kernel has compact but potentially
large support. The kernel does not necessarily extend across all
input dimensions of 5 , i.e., 3 ≤ 3in. To simplify our exposition,

without loss of generality, we assume that the �rst 3 dimensions of
5 correspond to the �lter dimensions of 6. Further, we allow 6 to
vary for di�erent locations in the input space. An example of this
setup is a space-time signal 5 encoding an RGB (3out = 3) video with
two spatial and a temporal dimension (3in = 3), to be convolved
with a kernel 6 that applies a foveated blur to each time slice of the
video (3 = 2). In the following derivations, we assume a spatially
invariant kernel for ease of notation. Sec. 4.1.3 explains how our
method can be easily extended to the spatially-varying case.

Formally, we seek to carry out the continuous convolutions

(5 ∗ 6) (x) =

∫

R3

5 (x − 3 )6(3 )d3 . (1)

This integral operation does not have a closed-form solution for all
but the most constrained sets of signals and/or kernels. In partic-
ular, it is unclear how this continuous operation can be applied to
generic neural �elds, which naturally only support point samples.
The typical solution for these integrals is numerical approxima-
tion: For low-dimensional integration domains, quadrature rules
are feasible, while the scalable gold standard in higher dimensions
is Monte Carlo integration. The latter proceeds by sampling the
integration domain and approximating the integral by a weighted
sum of integrand evaluations:

(5 ∗ 6) (x) = E3 [5 (x − 3 )6(3 )] ≈
1

#

∑

3∼?

5 (x − 3 )6(3 )

? (3 )
, (2)

where E is the expectation and 3 are now random samples drawn
from the probability density function ? . Unfortunately, a high num-
ber# of samples is required for large kernels6 and/or high-frequency
signals 5 , rendering this approach ine�cient.

In the following, we develop a method that performs continuous
convolutions in the form of Eq. 1, while only requiring a very low
number of network evaluations, independent of the kernel size.

4 METHOD

We e�ciently convolve a continuous signal 5 with a continuous
kernel 6 by approximating 6 with a piecewise polynomial function,
which becomes sparse after repeated di�erentiation. Our approach
requires the evaluation of the repeated integral of 5 at a sparse set
of sample positions dictated by the di�erentiated kernel (Sec. 4.1),
leading to a substantial speed-up of the convolution operation. This
general approach has �rst been studied by Heckbert [1986] in the
context of discrete representations. Our method lifts the idea to the
continuous neural setting by optimizing for a sparse di�erential
representation of 6 (Sec. 4.2), and obtaining the repeated continuous
integral of 5 by supervising on a minimal kernel using higher-order
�nite di�erences (Sec. 4.3). Once trained, any sparsity-optimized
convolution kernel can be applied to 5 e�ciently, without requiring
additional input parameters. Our method supports spatially-varying
convolutions in the form of continuously transformed kernels, lever-
aging the continuous nature of the representation. Fig. 3 gives an
overview of our approach.

4.1 Convolution by Repeated Di�erentiation

Our approach requires two conceptual ingredients: First, the convo-
lution operation in Eq. 1 reduces to a discrete sum if 6 consists

ACM Trans. Graph., Vol. 42, No. 6, Article 1. Publication date: December 2023.



1:4 • Ntumba Elie Nsampi, Adarsh Djeacoumar, Hans-Peter Seidel, Tobias Ritschel, and Thomas Leimkühler

Sparsity-optimized

Polynomials
Convolution Kernel Dirac Deltas

Repeated

Differentiation
Optimization Training with

Repeated Integration

Original Signal Neural Integral Field Neural Field Convolution

a) b) c)

Fig. 3. Overview of our approach. a) Given an arbitrary convolution kernel, we optimize for its piecewise polynomial approximation, which under repeated

di�erentiation yields a sparse set of Dirac deltas. b) Given an original signal, we train a neural field that captures the repeated integral of the signal. c)

The continuous convolution of the original signal and the convolution kernel is obtained by a discrete convolution of the sparse Dirac deltas from a) and

corresponding sparse samples of the neural integral field from b).

of only Dirac deltas (Sec. 4.1.1). Second, the right-hand side of
Eq. 1 can be transformed using repeated di�erentiation and in-
tegration (Sec. 4.1.2). Putting both ingredients together leads to an
e�cient discrete formulation of the continuous convolution oper-
ation (Sec. 4.1.3) involving a repeated integral �eld and a sparse
di�erential kernel consisting of Dirac deltas [Heckbert 1986].

4.1.1 Dirac Kernels. As our �rst ingredient, consider a kernel 6 that
is non-zero only at a small set of< locations in R

3 , i.e., 6 is

6(x) =

<∑

8=1

X (x − x
(8 ) )F (8 ) , (3)

a sum of Dirac deltas X , where x(8 ) ∈ R
3 denotes the location and

F (8 ) ∈ R the magnitude1 of the 8’th impulse. Then, by the sifting
property of Dirac deltas, Eq. 1 simpli�es to

(5 ∗ 6) (x) =

<∑

8=1

5 (x − x
(8 ) )F (8 ) , (4)

i.e., we have reduced the computation from a continuous integral
to a discrete sum – an e�cient operation if< is small.

4.1.2 Convolutions with Di�erentiation and Integration. Our second
ingredient is the following identity:

5 ∗ 6 =

(∫
5 dx8

)
∗

(
m

mx8
6

)
,

i.e., in order to convolve 5 with 6 we might as well convolve the
antiderivative of 5 with the corresponding derivative of 6. Applying
this principle repeatedly yields [Heckbert 1986; Perlin 1984]

5 ∗ 6 =

(∫ =

. . .

∫ =

5 dx=1 . . . dx
=
3

)

︸                          ︷︷                          ︸
5 =

∗

(
m3=

mx=1 . . . mx
=
3

6

)

︸             ︷︷             ︸
6−=

. (5)

Here, we sequentially di�erentiate 6 = times with respect to each of
its dimensions. We denote this multidimensional repeated derivative
as 6−= . For equality in Eq. 5 to hold, this pattern is mirrored for 5 ,
replacing di�erentiations with antiderivatives, where superscripts
= denote repeated integrations along the individual dimensions. We
denote the repeated multidimensional antiderivative of 5 as 5 = . We
refer to Heckbert [1986] for a proof of Eq. 5. Notice that input and

1Technically, X (0) = ∞. But since a Dirac delta integrates to one, in the context of

continuous convolutions, we refer to F (8 ) as “magnitudes” nevertheless.

output dimensions of 5 and 6 do not change after integration and
di�erentiation.

4.1.3 E�icient Neural Field Convolutions. The central idea of our
approach is to combine both ingredients presented above for the
case of piecewise polynomial kernels 6̂. Concretely, we observe
that piecewise polynomial functions turn into a sparse set of Dirac
deltas after repeated di�erentiation [Heckbert 1986] (Fig. 4), i.e., 6̂−=

reduces to the form of Eq. 3. This implies that Eq. 4 can be used to
perform a convolution with this kernel. Combining Eq. 4 and Eq. 5,
our �nal convolution operation reads

(5 ∗ 6̂) (x) =

<∑

8=1

5 = (x − x
(8 ) )F (8 ) . (6)

Notice that this formulation requires only < evaluations of the
repeated integral of 5 at locations dictated by the Dirac deltas of
the di�erentiated kernel to yield the same result as the equivalent
continuous convolution in Eq. 1.
The number of integrations and di�erentiations = directly de-

pends on the desired order of the kernel polynomials, as detailed
in Sec. 4.2. A disk-shaped kernel simulating thin-lens depth of �eld
in an image can be approximated well using a piecewise constant
function (corresponds to = = 1), while a Gaussian might require a
piecewise quadratic approximation (corresponds to = = 3) to yield
high-quality results with a low number of Dirac deltas.
Notice that our approach allows us to realize spatially-varying

convolutions as well: The evaluation of Eq. 6 is independent for
di�erent evaluation locations x. Therefore, we can make the choice
of the convolution kernel 6̂ a function of x itself. In Sec. 4.2.2 we
give details on how to obtain continuous parametric kernel families.
In summary, our method requires two components: (i) A piece-

wise polynomial kernel that results in a sparse set of Dirac deltas
after repeated di�erentiation, and (ii) an e�cient way to obtain and
evaluate the repeated multidimensional integral of a continuous
signal. These are detailed in Sec. 4.2 and Sec. 4.3, respectively.

4.2 Sparse Di�erential Kernels

Our approach requires a kernel 6 which, after repeated di�erentia-
tion, results in a sparse set of Dirac deltas with positions x(8 ) and
magnitudesF (8 ) :

6−= (x) =

<∑

8=1

X (x − x
(8 ) )F (8 ) . (7)

ACM Trans. Graph., Vol. 42, No. 6, Article 1. Publication date: December 2023.



Neural Field Convolutions by Repeated Di�erentiation • 1:5

Fig. 4. Repeated di�erentiation of a bilinear patch (3 = = = 2). A�er the first

di�erentiation, the patch exhibits linear variation only along the vertical

dimension. A�er subsequent di�erentiations, we obtain a constant patch,

two vertical lines, and, finally, four Dirac deltas.

This property is satis�ed for piecewise polynomial kernels of degree
= − 1, which reduce to Dirac deltas positioned at the junctions be-
tween the segments after= di�erentiations per dimension [Heckbert
1986] (Fig. 4). Thus, given a kernel 6, we seek to �nd its optimal
piecewise polynomial approximation 6̂ adhering to a user-speci�ed
budget of< Dirac deltas (Fig. 5).

Kernel 2nd Derivative

Fig. 5. Kernel representation in 1D for the case = = 2, i.e., a piecewise linear

function. Top row : The original continuous kernel 6 has a continuous second

derivative. Bo�om row : We approximate 6 with a piecewise linear function

6̂, which reduces to a sparse set of Dirac deltas in its second derivative.

To parameterize 6̂, we utilize the linear structure of Eq. 7 and the
linearity of di�erentiation: We consider the 3-dimensional =-fold
repeated antiderivative of the Dirac delta function

X= (x) =




∏
3

8=1 x
=−1
8

(=−1)3 !
min8 x8 ≥ 0

0 else

which is referred to as the =’th-order ramp (Fig. 6). We now write
our polynomial kernel 6̂ as a linear combination of shifted ramps:

6̂(x) =

<∑

8=1

X= (x − x
(8 ) )F (8 ) . (8)

Please note that Eq. 7 is the =’th derivative of Eq. 8 by construction.
Thus, we have established a parameterization of a�=−2-continuous
piecewise polynomial kernel 6̂, from which we can directly read o�
Dirac delta positions and magnitudes.

Fig. 6. 1D ramps of di�erent orders (redrawn from Heckbert [1986]). Each

ramp is the antiderivative of its predecessor.

We now optimize the following objective:

min
x(8 ) ,F (8 )

[

E
x∈R3

[
∥6(x) − 6̂(x)∥22

]
+ _

�����

<∑

8=1

F (8 )

�����

]

. (9)

The �rst term encourages the solution to be close to the reference
kernel on the entire domain. The second term steers the optimization
to prefer solutions where the Dirac magnitudes sum to zero, which
e�ectively enforces the kernel to be compact.

4.2.1 Optimization. We initialize the ramp positions x(8 ) on a reg-
ular grid and their magnitudes F (8 ) to zero. We use the Adam
[Kingma and Ba 2015] optimizer with standard parameters and set
_ = 0.1 in all our experiments. In each iteration, we uniformly
sample the continuous kernel domain. We observe that when the
provided ramp budget< is too high, the magnitudes of individual
ramps will approach zero, further increasing sparsity. We capitalize
on this fact by monitoring ramp magnitudes in regular intervals.
If an absolute magnitude falls below a small threshold, we remove
the ramp from the mixture and continue optimizing. Separable ker-
nels can be obtained by optimizing the respective 1D �lters and
combining them with an outer product. We provide timings of the
optimization for di�erent kernels in Supplemental Sec. 3.
We note the strong connection to spline-based approximations

of functions [Ahlberg et al. 2016]. In the low-order regime under
the continuity requirements we operate on, we �nd that our practi-
cal stochastic gradient descent-based approach yields high-quality
results without the need for more elaborate techniques.

4.2.2 Kernel Transformations. Many applications of convolutions
require kernels of di�erent sizes and shapes, in particular in the case
of spatially-varying convolutions. For example, foveated imagery or
the simulation of depth-of-�eld require continuous and �ne-grained
control over the size of a blur kernel. Our approach supports on-the-
�y kernel transformations without the need to sample and optimize
entire parametric families of kernels by leveraging the continuous
nature of the kernel and the signal.
Concretely, to continuously shift and (anisotropically) scale an

optimized kernel 6̂ using a matrix T, we simply apply T to the

Dirac delta positions, i.e., x(8 )
T

= Tx(8 ) . The updated Dirac delta

magnitudes are given byF (8 )
T

=
F (8 )

det(T)= . Thus, we need to run the

optimization for a kernel type only once in a canonical position
and size, and obtain continuously transformed kernel instances at
virtually no computational cost. Notice that, as a useful consequence,
our approach enables continuous scale-space analysis [Lindeberg
2013; Witkin 1987], as illustrated in supplemental.

4.3 Neural Repeated Integral Field

To compute Eq. 6, we need to evaluate 5 = , the =-th antiderivative of
5 as the second ingredient. We choose to implement 5 = as a neural
�eld 5̂ = . Ideally, it would hold that 5̂ = = 5 = . This might be di�cult
to achieve without knowing an analytic form of the antiderivative.
We could try Monte Carlo-estimating the antiderivative from the
signal, leading to a loss like

Ex∈3in

[


 5̂ = (x) − E3≥0 [5 (x − 3 )]





]
. (10)

ACM Trans. Graph., Vol. 42, No. 6, Article 1. Publication date: December 2023.



1:6 • Ntumba Elie Nsampi, Adarsh Djeacoumar, Hans-Peter Seidel, Tobias Ritschel, and Thomas Leimkühler

d) Eq. 11 (Ours)

b) Monte Carlo

c) Eq. 10

a) Signal

1
10

100
1000
Ref.

1
10

100
1000
Ref.

1
10

100
1000
Ref.

Fig. 7. (a): Given a signal 5 , we are interested in finding its antiderivative 5 1.

(b): A scalable way to obtain the antiderivative is Monte Carlo estimation

E3≥0 [ 5 (x − 3 ) ]. Increasing the number of samples (di�erent colors) gets

us closer to the true solution (black). (c): Using the estimates from b) to

supervise the training of a network 5̂ 1 as per Eq. 10 requires many sam-

ples, while the regressed antiderivative remains blurry. (d): In contrast, our

approach only requires a convolution with a small kernel (Eq. 11) to yield

high-quality results, including sharp features, with only a low number of

Monte Carlo samples. For each method, a pink bar marks the region that

needs to be considered for estimating/training the antiderivative value at

location x0. The di�erent graphs in b)-d) use di�erent constants of integra-

tion for improved visualization.

The inner expectation would sum over the entire half-domain 3 ≥ 0,
leading to a high variance and a low-quality 5̂ = . An example of this
is shown in Fig. 7, where the input is a 1D HDR signal (Fig. 7a).
To estimate the antiderivative at x0, we have to sample the entire
pink area in Fig. 7b, resulting in signi�cant variance, even if the
sample count increases. When using these estimates to train 5̂ = , this
variance leads to a low-quality, blurry regression (Fig. 7c), as no loss
function is known that properly captures the statistical properties
of Monte Carlo noise [Lehtinen et al. 2018].
For our purpose, convolution, what really needs to hold, is that

5̂ = ∗ℎ−== = 5 ∗ℎ= , for any piecewise polynomial kernel ℎ= of degree
= − 1. The resulting loss to achieve this is

Ex∈3in

[






<∑

8=1

5̂ = (x − x
(8 ) )F (8 ) − E

3 ∈supp(ℎ= ) [5 (x − 3 )ℎ= (3 )]








]

,

(11)

where x(8 ) andF (8 ) are the Dirac delta positions and magnitudes
of ℎ−== . The �rst term is due to Eq. 6 and the second term is a Monte
Carlo estimate of the convolved signal.

For e�cient training and a high-quality antiderivative, it is crucial
for ℎ= to be very compact: First, the right part of Eq. 11 becomes
a tame interval, signi�cantly reducing variance and thus enabling
training with a low number ofMonte Carlo samples (Fig. 7d). Second,
it prevents 5̂ = from “cheating” by not learning the antiderivative
of the signal but the antiderivative of a convolved signal. However,

22

P
S

N
R

Kernel Size (Relative to Ours)

Reference

S
S

IM

20

18

16

14

1 2.5 4

.6

.7

.5

.8

Fig. 8. Antiderivative quality as a function of kernel size used in Eq. 11. We

measure and display quality by repeated automatic di�erentiation of the

learned antiderivatives. We see that our minimal kernel is optimal in terms

of quality. Smaller kernels lead to instabilities and larger ones to blur.

we cannot reduce the support of ℎ= arbitrarily, as the left part of
Eq. 11 tends to result in instabilities, as the distances between the
x
(8 ) shrink. Fig. 8 illustrates the inherent trade-o� of this situation:

There exists a sweet spot for the kernel size, producing the highest-
quality antiderivatives. Smaller kernels lead to training instabilities,
larger kernels to blur.We refer to the optimal solution as theminimal

kernel.
While we could use any �lter shape as minimal kernel ℎ= , we

choose the =-fold convolution of a box with itself (Fig. 9). This
has the advantage that the left part of the loss Eq. 11 becomes a
sum over only< = (= + 1)3 elements that is e�cient to compute,
corresponding to higher-order �nite di�erences.

Fig. 9. Minimal piecewise polynomial kernels of di�erent degrees (top row)

and their corresponding Dirac deltas (bo�om row).

4.4 Implementation Details

All source code is accessible via https://neural-�elds-conv.mpi-
inf.mpg.de. We have implemented our prototype within the PyTorch
[Paszke et al. 2017] environment. Our integral �elds are realized us-
ing MLPs, where exact architectures vary slightly depending on the
modality to be represented, as detailed in Sec. 2 of the supplemental
document.
For training our repeated integral �eld, we again use the Adam

[Kingma and Ba 2015] optimizer with standard parameters. We
handle boundaries by mirror-padding the training signal. Consid-
ering a unit domain, we train with a size of 0.025 for the minimal
kernel ℎ= until convergence, followed by a �ne-tuning on a ker-
nel of size 0.0125. Empirically, we found this size to produce the
highest-quality antiderivatives (Fig. 8). As the kernel size cannot
be further decreased, our repeated integral �eld 5̂ = is a slightly
low-pass �ltered version of 5 = , resulting in a lower limit of �lter
sizes our convolutions can faithfully compute. Fortunately, these
small �lters are highly amenable to e�cient Monte Carlo estimation.
Thus, at test time, whenever a kernel size falls below the threshold,
we Monte-Carlo-estimate the convolution.

ACM Trans. Graph., Vol. 42, No. 6, Article 1. Publication date: December 2023.

https://neural-fields-conv.mpi-inf.mpg.de
https://neural-fields-conv.mpi-inf.mpg.de


Neural Field Convolutions by Repeated Di�erentiation • 1:7

Table 1. Se�ings for all applications.

Input Kernel

Modality 3in 3out Format Shape SVa 3 Order < b

Images 2 3 Grid Gauss ✕ 2 Linear 169
2 3 Grid DoG ✕ 1 Linear 13
2 3 Grid Circle ✓ 2 Const. 141

Bilat. Images 3 3 Grid Gauss ✓ 3 Const. 343
Video 3 3 Grid Tent ✕ 1 Linear 3
Geometry 3 1 SDF Box ✓ 3 Const. 8
Animation 1 69 Paths Gauss ✕ 1 Linear 13
Audio 1 1 Wave Box ✕ 1 Const. 2
a Experiments with spatially-varying kernels.
b The number of Diracs automatically adapts to the kernel as described in Sec. 4.2.1.

Convolution per Eq. 6 can be e�ciently implemented as an aug-
mented neural �eld based on 5̂ = , by prepending positional o�sets
x
(8 ) and appending a linear layer containingF (8 ) .

5 APPLICATIONS

To demonstrate the generality and e�ciency of our approach, we
consider �ve signal modalities: images, videos, geometry, character
animations, and audio. An overview of settings for all modalities
is given in Tab. 1. References are computed using Monte Carlo
estimation as per Eq. 2 until convergence. Further, we consider the
following baselines:

INSP [Xu et al. 2022]. Similar to our approach, INSP relies on
higher-order derivatives but uses them in a point-wise fashion to
reason about local neighborhoods, reminiscent of a Taylor expan-
sion. This method has to be trained for each convolution kernel
separately, while our integral �elds can be used with any kernel
of a �xed polynomial degree. We follow their original implementa-
tion and provide all second-order partial derivatives. We found that
providing more derivatives did not markedly improve their results.

BACON [Lindell et al. 2022] and PNF [Yang et al. 2022]. While
our method supports arbitrary �lters at test time, both BACON
and PNF are limited to a discrete cascade of : speci�c and �xed
intermediate network outputs with di�erent frequency contents,
i.e., a set of pre-�ltered versions of the signal. To compare ours to
BACON and PNF, we approximate the convolution with an arbitrary
�lter as a linear combination of their intermediate outputs: Given
the reference result, we optimize for a set of weights that when
multiplied with corresponding intermediate outputs is closest to the
target. Notice that this procedure requires a reference, while ours
does not. For PNF, we observed that �ner-scale intermediate outputs
are not zero-mean. We compensate for this by subtracting the mean
from all intermediate outputs and adding the sum of these means to
the coarsest output. This way, �ner levels only add higher-frequency
details to the solution, but no global color shifts.

5.1 Images

In this application, we consider (high dynamic range) RGB images
5 ∈ R

2 → R
3 as signals.

σ=0.05 σ=0.1 σ=0.2 σ=0.5Input

Fig. 10. Gaussian 2D image blur of the input signal, with increasing band-

width. It can be seen how our approach works also for large kernels.

Large Small
Derivative of Gaussian Input Signal

Fig. 11. Derivative-of-Gaussian filtering 2D result. Note, that our approach

supports such non-convex filters, producing signed results.

Table 2. Image quality comparison for Gaussian kernels.

f = 0.04 f = 0.05 f = 0.07

PSNR LPIPS SSIM PSNR LPIPS SSIM PSNR LPIPS SSIM

INSP 27.2 0.305 0.774 25.8 0.398 0.713 23.9 0.535 0.622
BACON 35.2 0.079 0.946 33.6 0.091 0.935 30.6 0.139 0.904
PNF 34.5 0.072 0.938 33.9 0.086 0.935 32.0 0.132 0.922
Ours 28.6 0.076 0.934 31.0 0.042 0.963 34.1 0.032 0.98

Linear �ltering. We show results for a Gaussian image �lter in
Fig. 10 and a derivative-of-Gaussian �lter in Fig. 11. More results can
be found in supplemental. Table 2 and Fig. 12 evaluate image quality
on a set of 50 images. Since no other method is able to produce
competitive results for large kernels, to facilitate an insightful anal-
ysis, we limit our numerical evaluation to the small-kernel regime.
We see that for very small kernels, BACON and PNF tend to pro-
duce higher-quality results, while we signi�cantly outperform all
methods as the kernel size increases.

Non-linear �ltering. Our approach can also be used for non-linear
�ltering, such as bilateral �ltering [Tomasi and Manduchi 1998]. We
implement this by optimizing for the repeated integral �eld of a
bilateral grid [Chen et al. 2007], which augments a 2D image with an
additional signal dimension, reducing �ltering to a linear operation
in this extended space. We see in Fig. 13 that our approach is able
to faithfully produce edge-aware �ltering results.

Spatially-varying �ltering. is demonstrated in Fig. 1 and Fig. 14.
In these cases, the strength of a circular blur �lter is determined by
a spatially-varying auxiliary signal in the form of a depth bu�er.

ACM Trans. Graph., Vol. 42, No. 6, Article 1. Publication date: December 2023.



1:8 • Ntumba Elie Nsampi, Adarsh Djeacoumar, Hans-Peter Seidel, Tobias Ritschel, and Thomas Leimkühler

OursINSP ReferenceBACON PNF

Fig. 12. A qualitative comparison between INSP [Xu et al. 2022], BACON [Lindell et al. 2022], PNF [Yang et al. 2022], and our approach using a Gaussian

kernel. INSP approach does hardly perform any filtering, when the kernel is larger, such as our approach supports, but su�ers from noise. BACON fairs be�er,

but shows ringing at high-contrast edges such as the house against the sky, while PNF also struggles to produce low-pass filtering results.

Fig. 13. Non-linear (bilateral) filtering of an input image (le�) by our method

(middle) and the reference (right).

Fig. 14. Depth-of-field applied to a synthetic image with a depth map.

5.2 Videos

Videos are �elds 5 ∈ R
3 → R

3, mapping 2D location and time to
RGB color. In Fig. 15, we apply smoothing with a tent �lter along
the time dimension to create appealing non-linear motion blur. We
refer to our supplemental material for a more extensive evaluation.

5.3 3D Geometry

Surfaces can be modeled using signed distance functions (SDFs)
5 ∈ R

3 → R. We apply 3D box �lters with di�erent side lengths f
to an SDF, resulting in a progressively smoothed surface. We again
compare our approach to INSP and BACON (no code is available to
apply PNF to the 3D case) in Fig. 16 and Table 3, where numerical
evaluations are averaged across the three 3D objects studied in INSP.
As metrics, we consider the mean squared error (MSE) of the SDF,
the intersection over union (IoU), as well as the Chamfer distance of
the reconstructed surface. We observe that we outperform INSP and

Input signal Motion blur
Ours Reference

T
im

e
T
im

e

Space

Space

Fig. 15. We apply our approach to a 3D space-time HDR field (video, seen

le�) to filter along the time axis with a tent kernel. The resulting motion

blur (middle) compares favorably to the reference.

Table 3. �ality comparisons of filtered SDFs using 3D box kernels.

f = 0.05 f = 0.15

MSE Cham. IoU MSE Cham. IoU

INSP 292.50000 98.07 0.90 281.30000 350.50 0.73
Bacon 16.43540 480.08 0.66 26.68353 818.17 0.48
Ours 0.00109 8.25 0.99 0.00026 6.10 0.99

BACON across all kernel sizes and metrics. More qualitative results
can be found in supplemental. Additionally, Fig. 17 demonstrates a
spatially-varying SDF �ltering result.

5.4 Animation

We consider the task of �ltering a neural �eld representation of
a motion-capture sequence, which contains a signi�cant amount
of noise. Our test sequence consists of 23 3D joint position paths
over time, resulting in a �eld 5 ∈ R → R

69. In Fig. 18 and the
supplemental, we show the result of applying a Gaussian �lter to
the noisy animation data, resulting in smooth motion trajectories.

5.5 Audio

Finally, we apply our framework to the task of �ltering an audio
signal 5 ∈ R → R, available for listening in the supplemental.

ACM Trans. Graph., Vol. 42, No. 6, Article 1. Publication date: December 2023.



Neural Field Convolutions by Repeated Di�erentiation • 1:9

Fig. 16. Two geometric shapes represented by an SDF (le�) are filtered with a box kernel (f = 0.05). While INSP, in the second column, su�ers from noise, and

BACON, in the third column, cannot reproduce larger-scale filtering, our result is close to the MC reference.

High σ Low σ High σ Low σ

Fig. 17. Spatially-varying blur from two views computed using our method.

Raw Filtered

Fig. 18. A noisymotion-capture sequence (le�) is filtered using our approach

to yield smooth motion trajectories (right).

6 ANALYSIS

Here, we analyze further individual aspects of our approach.

Repeated Integral Fields. We seek to gain more insights into our
learned integral �elds. To this end, we consider the 2D image case
(Sec. 5.1) both for single and double integrals per dimension, as re-
quired for convolutions with piecewise constant and linear kernels,
respectively. In Tab. 4 we compare our antiderivatives against Au-
toInt [Lindell et al. 2021]. As the original implementation does not
support integration with respect to more than one variable, we re-
implemented this baseline using the functorch library for repeated
di�erentiation. We compute the mean squared error (MSE) between
the original signal and the obtained integral �elds after repeated
automatic di�erentiation, averaged over three images. We do not
compare integrals directly, as their absolute values are dominated
by higher-order constants of integration. Further, we measure the
time required to train the �elds, as well as the size of the network
during training in terms of the number of nodes. As there is no

Table 4. Integral field evaluation.

Int. Op. Method MSE (×10−3) Time Graph Size

∫∫ AutoInt 6.83 1.3h 339
Ours 6.48 1.1h 11

∫ 2∫ 2 AutoInt 7.71 14.7h 15,407
Ours 7.28 1.2h 11

straightforward procedure to count the number of nodes of the
repeated-derivative graphs, we use the o�cial AutoInt implemen-
tation for this particular calculation and di�erentiate two and four
times with respect to one input variable, to get a good approximation
of the two cases studied. Corresponding graphs are visualized in
Fig. 19.

We see that our approach produces higher-quality antiderivatives
than AutoInt while taking signi�cantly less time to train, in par-
ticular for higher-order integrals. Further, our network size during
training is independent of the integration order, while the com-
putational graphs of AutoInt grow quickly due to the symbolic
di�erentiation required.
We are further interested in how the quality of the learned anti-

derivative a�ects convolution quality. For this analysis, we consider
antiderivative MSE as above (lower is better), and convolution qual-
ity in terms of PSNR (higher is better). We �nd the two measures
highly correlated: Pearson’s R = -0.98.
In Sec. 3 of the supplemental document, we study the accuracy

of our optimized kernels.

Comparison to equal-e�ort MC. While we use converged Monte
Carlo estimates of convolutions (Eq. 2) as references in our exper-
iments, we are also interested in the quality of such an estimate
when reducing the number of samples to the number of Dirac deltas
we use in our method, providing an equal-e�ort comparison. In
Fig. 20 we show an illustration of this analysis. We observe that MC
su�ers from extensive noise, while our solution is smooth.

ACM Trans. Graph., Vol. 42, No. 6, Article 1. Publication date: December 2023.



1:10 • Ntumba Elie Nsampi, Adarsh Djeacoumar, Hans-Peter Seidel, Tobias Ritschel, and Thomas Leimkühler

a) b) c)

Fig. 19. Comparison of di�erent graph sizes. a) Our method retains a small graph independent of integration order. b) The AutoInt graph a�er two

di�erentiations (first Int. Op. in Tab. 4). c) The AutoInt graph a�er four di�erentiations (second Int. Op. in Tab. 4). Same colors represent same operations.

Monte Carlo Ours
2D 3D 2D 3D

Fig. 20. Ours vs. an equal-e�ort Monte Carlo estimate of a convolution.

7 DISCUSSION AND CONCLUSION

We have presented a novel approach to perform general, spatially-
varying convolutions in continuous signals. Capitalizing on the fact
that piecewise polynomial kernels become sparse after repeated
di�erentiation, we only require a small number of integral-network
evaluations to perform large-scale continuous convolutions.
Since our work is one of the �rst steps in this direction, there is

ample opportunity for future work. Currently, one of our biggest
limitations is that we need access to the entire signal to train our
repeated integral �eld. This prevents the treatment of signals that
are only partially observed through a di�erentiable forward map,
e.g., as prominently is the case for neural radiance �elds [Mildenhall
et al. 2020].

Our integral �elds are trained using generalized �nite di�erences,
which we found to become unstable for small kernels (Sec. 4.4).
This naturally imposes an upper frequency limit on the learned
antiderivatives. Fortunately, this becomes noticeable only for small
kernels, in which case we resort to Monte Carlo sampling of the
convolution, which is e�cient in this condition.
Our assumption is that kernels to be used for spatially-varying

�ltering are (anisotropically) scaled versions of a reference kernel,
which, arguably, covers a broad range of applications. We do not
have a scalable solution for situations that violate this assumption –
except for special problems such as bilateral �ltering. One solution
could be blending between the Dirac deltas of a set of pre-computed
reference kernels. Further, kernel transformations are limited to axis-
aligned operations. We envision that re-parameterizations leverag-
ing the continuous nature of the representation might be able to lift
this restriction.
In this work, we do not claim superiority over operating on a

grid, if enough space is available to represent the signal that way.
But if one needs to use a neural �eld, e.g. for extreme compression,
continuous queries, or other advantages (Sec. 1), an approach such as
ours is needed. We hope to inspire future work on signal processing
in continuous neural representations to help them reach their full
potential.

REFERENCES
J Harold Ahlberg, Edwin Norman Nilson, and Joseph Leonard Walsh. 2016. The Theory

of Splines and Their Applications. Vol. 38. Elsevier.
Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-

Brualla, and Pratul P. Srinivasan. 2021. Mip-NeRF: A Multiscale Representation for
Anti-Aliasing Neural Radiance Fields. ICCV (2021).

Jonathan T. Barron, BenMildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman.
2022. Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields. CVPR (2022).

E Oran Brigham. 1988. The fast Fourier transform and its applications. Prentice-Hall,
Inc.

Jiawen Chen, Sylvain Paris, and Frédo Durand. 2007. Real-time edge-aware image
processing with the bilateral grid. ACM Trans. Graph. 26, 3 (2007), 1–9.

Franklin C Crow. 1984. Summed-area tables for texture mapping. In SIGGRAPH. 207–
212.

Yilun Du, M. Katherine Collins, B. Joshua Tenenbaum, and Vincent Sitzmann. 2021.
Learning Signal-Agnostic Manifolds of Neural Fields. In NeurIPS.

Emilien Dupont, Adam Goliński, Milad Alizadeh, Yee Whye Teh, and Arnaud Doucet.
2021. Coin: Compression with implicit neural representations. In ICLR (Neural
Compression Workshop).

Emilien Dupont, Hyunjik Kim, S. M. Ali Eslami, Danilo Jimenez Rezende, and Dan
Rosenbaum. 2022a. From data to functa: Your data point is a function and you can
treat it like one, Vol. 162. PMLR, 5694–5725.

Emilien Dupont, Yee Whye Teh, and Arnaud Doucet. 2022b. Generative Models as
Distributions of Functions, Vol. 151. PMLR, 2989–3015.

Ziya Erkoç, Fangchang Ma, Qi Shan, Matthias Nießner, and Angela Dai. 2023. Hyper-
di�usion: Generating implicit neural �elds with weight-space di�usion. In ICCV.

Zeev Farbman, Raanan Fattal, and Dani Lischinski. 2011. Convolution pyramids. ACM
Trans. Graph. 30, 6 (2011), 1–8.

Rizal Fathony, Anit Kumar Sahu, Devin Willmott, and J Zico Kolter. 2020. Multiplicative
�lter networks. In ICLR.

Alain Fournier and Eugene Fiume. 1988. Constant-time �ltering with space-variant
kernels. ACM Trans. Graph. 22, 4 (1988), 229–238.

William T Freeman, Edward H Adelson, et al. 1991. The design and use of steerable
�lters. IEEE TPAMI 13, 9 (1991), 891–906.

Paul S Heckbert. 1986. Filtering by repeated integration. ACM Trans. Graph. 20, 4
(1986), 315–321.

PedroHermosilla, Tobias Ritschel, Pere-Pau Vázquez, Àlvar Vinacua, and Timo Ropinski.
2018. Monte carlo convolution for learning on non-uniformly sampled point clouds.
ACM Trans. Graph. 37, 6 (2018), 1–12.

Amir Hertz, Or Perel, Raja Giryes, Olga Sorkine-Hornung, and Daniel Cohen-Or. 2021.
Sape: Spatially-adaptive progressive encoding for neural optimization. NeurIPS 34
(2021), 8820–8832.

Brian K. S. Isaac-Medina, Chris G. Willcocks, and Toby P. Breckon. 2023. Exact-NeRF:
An Exploration of a Precise Volumetric Parameterization for Neural Radiance Fields.
CVPR (2023).

Markus Kettunen, Marco Manzi, Miika Aittala, Jaakko Lehtinen, Frédo Durand, and
Matthias Zwicker. 2015. Gradient-domain path tracing. ACM Trans. Graph. 34, 4
(2015), 1–13.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization.
In ICLR.

Georgios Kopanas, Thomas Leimkühler, Gilles Rainer, Clément Jambon, and George
Drettakis. 2022. Neural Point Catacaustics for Novel-View Synthesis of Re�ections.
ACM Trans. Graph. 41, 6 (2022), 1–15.

Jaakko Lehtinen, Jacob Munkberg, Jon Hasselgren, Samuli Laine, Tero Karras, Miika
Aittala, and Timo Aila. 2018. Noise2Noise: Learning Image Restoration without
Clean Data. In ICML. 2965–2974.

Thomas Leimkühler, Hans-Peter Seidel, and Tobias Ritschel. 2018. Laplacian Kernel
Splatting for E�cient Depth-of-�eld and Motion Blur Synthesis or Reconstruction.
ACM Trans. Graph. 37, 4 (2018), 1–11.

Tony Lindeberg. 2013. Scale-space theory in computer vision. Vol. 256. Springer Science
& Business Media.

David B Lindell, Julien NP Martel, and Gordon Wetzstein. 2021. Autoint: Automatic
integration for fast neural volume rendering. In CVPR. 14556–14565.

ACM Trans. Graph., Vol. 42, No. 6, Article 1. Publication date: December 2023.



Neural Field Convolutions by Repeated Di�erentiation • 1:11

David B Lindell, Dave Van Veen, Jeong Joon Park, and Gordon Wetzstein. 2022. Bacon:
Band-limited coordinate networks for multiscale scene representation. In CVPR.
16252–16262.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ra-
mamoorthi, and Ren Ng. 2020. Nerf: Representing scenes as neural radiance �elds
for view synthesis. In ECCV. 405–421.

ThomasW. Mitchel, Benedict Brown, David Koller, TimWeyrich, Szymon Rusinkiewicz,
and Michael Kazhdan. 2020. E�cient Spatially Adaptive Convolution and Correlation.
Technical Report 2006.13188. arXiv preprint.

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. Instant
Neural Graphics Primitives with a Multiresolution Hash Encoding. ACM Trans.
Graph. 41, 4 (2022), 1–15.

Harald Niederreiter. 1992. Low-discrepancy point sets obtained by digital constructions
over �nite �elds. Czechoslovak Mathematical Journal 42, 1 (1992), 143–166.

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Love-
grove. 2019. Deepsdf: Learning continuous signed distance functions for shape
representation. In CVPR. 165–174.

Keunhong Park, Utkarsh Sinha, Jonathan T Barron, So�en Bouaziz, Dan B Goldman,
Steven M Seitz, and Ricardo Martin-Brualla. 2021. Ner�es: Deformable neural
radiance �elds. In ICCV. 5865–5874.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. 2017. Auto-
matic di�erentiation in pytorch. (2017).

Kenneth Perlin. 1984. Personal communication with Paul Heckbert, mentioned in
Heckbert [1986].

Nicholas Sharp and Alec Jacobson. 2022. Spelunking the Deep: Guaranteed Queries
on General Neural Implicit Surfaces via Range Analysis. ACM Trans. Graph. 41, 4
(2022), 1–16.

Assaf Shocher, Ben Feinstein, Niv Haim, and Michal Irani. 2020. From discrete to
continuous convolution layers. arXiv preprint arXiv:2006.11120 (2020).

Patrice Simard, Léon Bottou, Patrick Ha�ner, and Yann LeCun. 1998. Boxlets: a fast
convolution algorithm for signal processing and neural networks. NeurIPS 11 (1998).

Gurprit Singh, Cengiz Öztireli, Abdalla GM Ahmed, David Coeurjolly, Kartic Subr,
Oliver Deussen, Victor Ostromoukhov, Ravi Ramamoorthi, and Wojciech Jarosz.
2019. Analysis of sample correlations for Monte Carlo rendering. In Comp. Graph.
Forum, Vol. 38. Wiley Online Library, 473–491.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon
Wetzstein. 2020. Implicit neural representations with periodic activation functions.
NeurIPS 33 (2020), 7462–7473.

Vincent Sitzmann, Michael Zollhöfer, and Gordon Wetzstein. 2019. Scene Representa-
tion Networks: Continuous 3D-Structure-Aware Neural Scene Representations. In
NeurIPS.

Ilya Meerovich Sobol. 1967. On the distribution of points in a cube and the approximate
evaluation of integrals. Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki
7, 4 (1967), 784–802.

Kenneth O Stanley. 2007. Compositional pattern producing networks: A novel ab-
straction of development. Genetic programming and evolvable machines 8 (2007),
131–162.

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Ragha-
van, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan Barron, and RenNg. 2020. Fourier
features let networks learn high frequency functions in low dimensional domains.
NeurIPS 33 (2020), 7537–7547.

Ayush Tewari, Justus Thies, Ben Mildenhall, Pratul Srinivasan, Edgar Tretschk, W Yifan,
Christoph Lassner, Vincent Sitzmann, Ricardo Martin-Brualla, Stephen Lombardi,
et al. 2022. Advances in neural rendering. Comp. Graph. Forum 41, 2 (2022), 703–735.

Carlo Tomasi and Roberto Manduchi. 1998. Bilateral �ltering for gray and color images.
In ICCV. 839–846.

Edgar Tretschk, Ayush Tewari, Vladislav Golyanik, Michael Zollhöfer, Christoph Lass-
ner, and Christian Theobalt. 2021. Non-rigid neural radiance �elds: Reconstruction
and novel view synthesis of a dynamic scene from monocular video. In ICCV. 12959–
12970.

Cristina Vasconcelos, Kevin Swersky, Mark Matthews, Milad Hashemi, Cengiz Oztireli,
and Andrea Tagliasacchi. 2023. CUF: Continuous Upsampling Filters. In CVPR.

Delio Vicini, Sébastien Speierer, and Wenzel Jakob. 2022. Di�erentiable signed distance
function rendering. ACM Trans. Graph. 41, 4 (2022), 1–18.

Paul Viola and Michael Jones. 2001. Rapid object detection using a boosted cascade of
simple features. In CVPR, Vol. 1. I–I.

ShenlongWang, Simon Suo, Wei-Chiu Ma, Andrei Pokrovsky, and Raquel Urtasun. 2018.
Deep parametric continuous convolutional neural networks. In CVPR. 2589–2597.

Yinhuai Wang, Shuzhou Yang, Yujie Hu, and Jian Zhang. 2022. NeRFocus: Neural
Radiance Field for 3D Synthetic Defocus. arXiv preprint arXiv:2203.05189 (2022).

Lance Williams. 1983. Pyramidal parametrics. In SIGGRAPH, Vol. 17. 1–11.
Andrew P Witkin. 1987. Scale-space �ltering. In Readings in Computer Vision. 329–332.
Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany, Shiqin Yan, Numair Khan,

Federico Tombari, James Tompkin, Vincent Sitzmann, and Srinath Sridhar. 2022.
Neural �elds in visual computing and beyond. Comp. Graph. Forum 41, 2 (2022),

641–676.
Dejia Xu, Peihao Wang, Yifan Jiang, Zhiwen Fan, and Zhangyang Wang. 2022. Signal

Processing for Implicit Neural Representations. In NeurIPS.
Guandao Yang, Serge Belongie, Bharath Hariharan, and Vladlen Koltun. 2021. Geometry

processing with neural �elds. NeurIPS 34 (2021), 22483–22497.
Guandao Yang, Sagie Benaim, Varun Jampani, Kyle Genova, Jonathan Barron, Thomas

Funkhouser, Bharath Hariharan, and Serge Belongie. 2022. Polynomial neural �elds
for subband decomposition and manipulation. NeuRIPS 35 (2022), 4401–4415.

Yu-Jie Yuan, Yang-Tian Sun, Yu-Kun Lai, Yuewen Ma, Rongfei Jia, and Lin Gao. 2022.
NeRF-editing: geometry editing of neural radiance �elds. In ICCV. 18353–18364.

Xian-Da Zhang. 2022. Modern signal processing. In Modern Signal Processing. De
Gruyter.

ACM Trans. Graph., Vol. 42, No. 6, Article 1. Publication date: December 2023.


	Abstract
	1 Introduction
	2 Related Work
	3 Background
	4 Method
	4.1 Convolution by Repeated Differentiation
	4.2 Sparse Differential Kernels
	4.3 Neural Repeated Integral Field
	4.4 Implementation Details

	5 Applications
	5.1 Images
	5.2 Videos
	5.3 3D Geometry
	5.4 Animation
	5.5 Audio

	6 Analysis
	7 Discussion and Conclusion
	References

