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Table 1. Different convolution methods. 𝑛 is the size of the filter,𝑚 the size
of the signal (samples or weights to represent it), and𝑑 the signal dimension.

Time Spat. vary Noisy Cont.
Classic 𝑂 (𝑚 × 𝑛𝑑 ) ✓ ✕ ✕

Fourier 𝑂 (𝑚 × log(𝑚) × 𝑑) ✕ ✕ ✕

Monte Carlo 𝑂 (𝑚 × 𝑛) ✓ ✓ ✓
SAT 𝑂 (𝑚 × 𝑑) ✓ ✕ ✕

Mip-NeRF 𝑂 (𝑚) ✓ ✕ ✓
INSP 𝑂 (𝑚) ✕ ✕ ✓
Ours 𝑂 (𝑚) ✓ ✕ ✓

Table 2. Architecture details of our integral fields.

Application #Layers #Features #Trainable Params.

Images1 5 256 270,851
Images2 5 512 1,065,987
Videos 9 256 534,019
Geometry 5 256 270,851
Audio 5 256 270,851
Animation 5 256 270,851
1 Low-resolution (256x256) images used for large-scale comparisons.
2 High-resolution (3000x3000) images used for displaying results.

Table 3. Accuracy of kernels and time to optimize them.

𝑚 3 7 13 24
𝑛 1 2 1 2 1 2 1 2
MSE 1.6e-1 1.5e-2 1.5e-2 7.9e-4 4.0e-3 7.6e-5 1.1e-3 2.3e-5
Time (s) 3 25 4 60 6 75 9 132
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1 CONVOLUTION METHODS
In Tab. 1 we compare different solutions to the convolution problem.

2 INTEGRAL FIELD MODEL DETAILS
In Tab. 2 we give details of network architectures for the repeated
integral fields we use per application. In all caseswe use amulti-layer
perceptron (MLP). Similar to Lindell et al. [2021], we observed best
results with Swish [Ramachandran et al. 2017] activation functions.
We report the number of hidden layers, the number of features per
layer, and the resulting number of trainable parameters.

3 KERNELS
In Tab. 3 we provide details on our optimized kernels. Here, we
consider a 1D Gaussian kernel, represented by different numbers
𝑚 of Diracs, using different orders of differentiation 𝑛. We give
the reconstruction error in terms of the mean squared error (MSE)
and the time (in seconds) our unoptimized implementation takes to
obtain a converged result.
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